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1.0  Abstract

Asynchronous design methodologies can yield designs that are smaller, and/or consume less power, than
their synchronous counterparts. Traditional tools, oriented toward synchronous designs, may miss critical
asynchronous design problems. This paper describes the modeling methodology and hazard analysis of the
SIMIC logic simulator that address asynchronous designs. It also describes XPOWER, an analysis and
visualization tool for dynamic power consumption.

2.0  Simulation Overview
Since the ultimate goal of the design verification process is to manufacture working parts, the simulation
phase must, in addition to modeling a design’s functionality and timing as accurately as possible, also pre-
dict its operation if event timing could vary somewhat (e.g., due to changes in processing parameters or
supply voltage). In general, this may require multiple simulations with different component delay distribu-
tions. However, since today’s designs could easily contain over 100,000 devices, manual analysis of the
(voluminous) simulation results by itself cannot be expected to uncover every timing problem. Thus, the
simulator must at least be capable of directing the designer to problematic sections of the logic.

Since circuit-level simulators such as SPICE, whose domain is voltages and currents, provide the greatest
modeling accuracy and coupling to manufacturing parameters, they have been the mainstay for verifying
and characterizing cell libraries for both synchronous and asynchronous applications, and for analyzing
delays along critical paths once these paths have been determined. Simulating the entire design in the volt-
age/current domain is prohibitive, however, even with the speedup provided by “timing simulators”, which
exploit latency in MOS circuits and utilize relaxation-based iteration and/or lookup tables rather than ana-
lytical models [Sal84]. Even if the barrier of execution time didn’t exist, it is very difficult to isolate and
identify, at this level of abstraction, many types of hazard conditions (e.g., setup and hold time violations,
essential hazards, functional hazards) that could cause different operation with minor changes in event tim-
ing. Also, there is no way to represent indeterminate values, that is, the values of signals that are unknown
during simulation but will either be logical 0 or logical 1 in the actual circuit (e.g., the values of state vari-
ables at power up, the state of a flip-flop after a setup-time violation occurs, etc.).

Switch-level simulators abstract analog node voltages to logical levels, which can increase throughput con-
siderably. They also solve the initial state problem by adding an uninitialized logic state. However, current
switch level simulators have problems with timing accuracy and, more importantly, with reconvergent
fanout of an unknown state. For example, a switch level simulator will not correctly resolve the output of
the circuit shown in Figure 1 with the given inputs.
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FIGURE 1 Switch model of 2-input multiplexor and results with unknown control

Gate-level and systems-level simulators can provide fast throughput by utilizing higher-level primitive ele-
ments and behavioral models. They can, therefore, solve most reconvergent fanout problems found in typi-
cal switch-level models by encapsulating the reconvergent fanout within a single element. Traditionally,
these simulators have focused on ease of modeling and/or simulator throughput, neglecting some funda-
mental circuit properties (for example, nonlinear delay vs. loading characteristics, input-slew-dependent
delays, merging the output characteristics of wire-tied drivers) that may cause gross errors in timing. Errors
of 400% have been seen in many “good” models at points over the expected operating range of the cells.

Modern gate-level simulators support various features to detect and locate timing problems. Almost all
support spike propagation (generation of an X-pulse when a “glitch” occurs, i.e., when an element’s inputs
change too quickly for its output to respond) and timing checks. However, these timing checks are prima-
rily oriented toward synchronous designs, where proper clocking (glitch-free clocks with adequate pulse-
width and period) and adherence to gross safety margins for setup and hold times can usually avert any
unexpected problems. For this reason, designers of asynchronous circuits do not have a high degree of con-
fidence in the current generation systems- and/or gate-level simulators.

Some simulators utilize a bounded delay methodology, allowing element delays to range between their
minimum and maximum extremes. Ambiguity region (“min-max”) analysis propagates rising and falling
levels within bounded regions and utilize element-specific rules to set outputs to the unknown state when
the transition regions of the element’s inputs overlap. This approach tends to be overly-pessimistic, even
when “correlated delay” and reconvergent-fanout analysis is used to reduce the overlap of related inputs.
Monte Carlo simulation is arguably the best bounded delay approach; some judgement is necessary, how-
ever, in determining the number of simulations required to reach a comfortable level of confidence.

3.0   Hazard Analysis For Asynchronous Designs
The SIMIC logic simulator provides the benefits of gate-level simulation with timing accuracy close to
SPICE. It supports a robust set of hazard checks to trap potential problems in both asynchronous and syn-
chronous designs. Additionally, SIMIC can be run as an interactive debugging tool to quickly locate and
correct timing problems.

In addition to the flip-flop setup-time, hold-time, and clock/set/reset pulse-width checks, SIMIC supports
checks for wire-tie conflicts, oscillations (excessive activity in response to a primary input event), combi-
national hazards, plus a number of other useful checks. The combinatorial hazard checks can not only
direct the designer to the origin of a manifest timing problem, but can also direct the designer to sections of
the logic that are dangerously close to malfunctioning, even though circuit operation is correct for the
delay distribution being simulated. The hazard categories are illustrated in Figure 2 for an AND gate, where
Tr and Tf are respectively the output’s rise and fall delays, and T is the output’s average propagation delay:

(1) Pulse hazard – a “narrow” pulse on a signal whose width is comparable to the signal’s average
propagation delay. The user can define “narrow”; by default, it is 3X the average propagation
delay. In general, narrow pulses are unplanned, and could grow wider or disappear with perturba-
tion of delays due to variations in processing parameters and supply voltage. Pulse hazard checks
are supported for all element types.
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(2) Spike hazard – a pair of input events at an element’s inputs in which the second event arrives
before an element output can respond to the first event. This is the classic “glitch”. In general, the
operation of the actual circuit is indeterminate. However, to avoid overly-pessimistic results when
the second input event closely follows the first (so that the output signal could not have begun to
respond to the first event), the user can define a threshold interval on a per-signal basis that filters
out “innocuous” transients. Spike hazard checks are supported for all element types.

(3) Near hazard – a sequence of input events within an interval in which an element’s output response
would have been different had the events occurred in a different order. For example, in Figure 2(c),
instead of remaining at a constant logical 0, signal C would pulse or spike if the order of the transi-
tions at inputs A and B were reversed. The user can define the analysis interval; by default, this
interval is twice the output’s average propagation delay. Near hazard checks are supported for all
combinational primitives. 

FIGURE 2 Combinational Timing Hazards 

The user can independently enable or disable each of the combinational hazard checks on a per-signal
basis. When a hazard is detected at an enabled signal, SIMIC will issue a warning message describing the
hazard. Since the volume of warning messages could become large for some designs, even with the user’s
ability to be selective, crucial warnings could be missed when interspersed between many that are not as
critical. Thus, SIMIC supports dedicated message counters for each type of hazard (and for wire-tie con-
flicts and oscillations) on a per-signal basis to limit the number issued warning messages to a user-defined
volume. 

In addition to the warning message mechanism, the user can independently direct SIMIC to temporarily set
a signal to the unknown value (for the duration of the transient) when a spike hazard or a near hazard has
been detected. This X value will be then propagate along the signal’s fanout cone, and if the timing prob-
lem can cause a steady-state error, the X value will ultimately reach, and latch into, the subset of state vari-
ables that could be affected. X propagation is always performed once enabled, regardless of the limit on
warning messages. The condition at which a spike should be propagated and the size of the resulting X
propagated is controllable on a per-node basis.

These timing and hazard checks can be very effective for detecting, locating, and correcting design prob-
lems in asynchronous circuits:

• If a near hazard occurs at a signal along a sensitized path to a state variable, the circuit may be close to
malfunctioning, though it may be operating correctly with the simulated delay distribution.

• If a spike hazard is sensitized to a state variable, the final state of the circuit may be uncertain. 

• If a pulse hazard is sensitized to a state variable that should, at most, execute a single transition in
response to a single input event (i.e., there are no transient states), the circuit may already be operating
incorrectly. 
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Consider, for example, the circuit shown Figure , which is a gate-level representation of a toggle (T) flip-
flop in one cell library used at the University of Manchester [Yant92]. For simplicity, the rise and fall
delays of each element are assumed to be equal; for example, the propagation delay of each multiplexor
AND gate is 2 time-units. The two gates labeled with an asterisk are redundant consensus terms generated
to eliminate switching transients in the model, and are not in the physical cell (which utilizes charge storage
in a functional block to achieve the same result). This model is a slightly simplified representation of the
model generated by the SPICE-to-gate-level extractor, SP2LOG, described later.

FIGURE 3 Toggle Cell And Its Flow Table

This cell’s flow table exhibits (in fact, is the classic example of) an essential hazard, which is defined as
[Ung69]: “For some initial total state and input variable x, three consecutive changes in x take the system to
a state that is different from (and not equivalent to) the state reached after a single x-change”. Typically,
unless the delay distribution is such that an essential hazard manifests itself to produce the wrong final
state, it is difficult (if not impossible) for simulation to uncover its existence without the “what-if” hazard
checks described above.

In this case, the essential hazard manifests itself when the toggle cell outputs DOT and BLANK are lightly
loaded, so their propagation delays are small, and input IN is heavily loaded, so the slew-dependent delay at
the output of inverter NIN, labeled D in the figure, is relatively large. In particular, if the circuit is initially
stable in State 1 with the inputs CDN = 1 and IN = 0, and if the output delays at DOT and BLANK are 1
time-unit, as shown in the figure, then when input IN executes a 0→1 transition, the final state of the circuit
will be State 4 instead of State 2 if D ≥ 5. Furthermore, if simulation is performed with D < 5, the final state
will be State 2, and there will be no indication that the circuit is close to malfunctioning unless the hazard
checks are enabled.
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FIGURE 4 SIMIC Simulations Of The Toggle Cell For Different Values Of Input Delay

Three SIMIC simulations were performed for the toggle circuit, as shown in Figure 4. Three tests (distinct
primary input states) were applied; the first test, at time 0, set CDN to 0 to initialize the circuit to State 1,
and the second test, at time 50, set CDN to 1 to bring the circuit to the desired total state. The third test, at
time 100, is the 0→1 transition at IN. Warning messages for near and spike hazards were enabled, and X
propagation for these hazards were disabled. With D = 2, the circuit correctly enters State 2, as shown in
Figure 4(a). However, the near hazard message for signal NB1 (which occurs for all values of D < 4) indi-
cates that if the order of its input transitions had been different (i.e., had the value of D been greater), the
simulation results might have been different. (There is also a near hazard reported at signal ND1, which
happens to be the same logical function, but this hazard is non-critical since ND2 is 1 at the time, so ND1 is
not sensitized to DOT.) The simulation results for D = 4 are shown in Figure 4(b). The circuit still enters
State 2, but now, the 1→0 transition at NIN occurs after the 0→1 transition at DOT, resulting in a spike haz-

C=                 CI N ND NB
C=                 DN I DO BL
C=                 N  N OT LA
C=                      T  AN
C=                         NK
C=                         K 

        0 T     1: 00 X XX XX
        2 T     1: 00 1 1X 1X
        3 T     1: 00 1 10 10
       50 T     2: 10 1 10 10
      100 T     3: 11 1 10 10
      102 T     3: 11 0 00 10
      103 W     3> NEAR NB1 (AND)
      103 W     3> NEAR ND1 (AND)
      103 T     3: 11 0 01 10

  time test

(a) SIMIC Terminal Output For D = 2

C=                 CI N ND NB
C=                 DN I DO BL
C=                 N  N OT LA
C=                      T  AN
C=                         NK
C=                         K 

        0 T     1: 00 X XX XX
        2 T     1: 00 X 1X 1X
        3 T     1: 00 X 10 10
        4 T     1: 00 1 10 10
       50 T     2: 10 1 10 10
      100 T     3: 11 1 10 10
      102 T     3: 11 1 00 10
      103 T     3: 11 1 01 10
      104 W     3> SPIKE(0->1->0) NB1
      104 W     3> SPIKE(0->1->0) ND1
      104 T     3: 11 0 01 10

(b) SIMIC Terminal Output For D = 4

(c) SIMIC Terminal Output For D = 5 Exhibiting The Essential Hazard

C=                 CI N ND NB
C=                 DN I DO BL
C=                 N  N OT LA
C=                      T  AN
C=                         NK
C=                         K 

        0 T     1: 00 X XX XX
        2 T     1: 00 X 1X 1X
        3 T     1: 00 X 10 10
        5 T     1: 00 1 10 10
       50 T     2: 10 1 10 10
      100 T     3: 11 1 10 10
      102 T     3: 11 1 00 10
      103 T     3: 11 1 01 10
      105 W     3> NEAR NB1 (AND)
      105 W     3> NEAR ND1 (AND)
      105 W     3> NEAR NDOT (NOR)
      105 T     3: 11 0 01 00
      106 T     3: 11 0 01 01
      107 W     3> PULSE(0->1->0 Width=2 Width/Delay=1.00) NB1
      107 W     3> PULSE(0->1->0 Width=2 Width/Delay=1.00) ND1
      107 W     3> PULSE(0->1->0 Width=5 Width/Delay=2.50) ND2
      107 T     3: 11 0 11 01
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ard at NB1. This indicates that the final state might actually be indeterminate. With D = 5, NB1 actually
executes a 0→1 transition, forcing NBLANK low, and ultimately causing the circuit to enter State 4, as
shown in Figure 4(c) Had X propagation been enabled for near and spike hazards in these simulations, both
DOT and BLANK would have been forced to X, indicating that circuit operation is really uncertain

4.0  Model Accuracy
Since different gate-level models of a given cell can exhibit different transient responses, the importance of
selecting a model that captures the nuances of the cell’s physical implementation cannot be overempha-
sized. Without a one-to-one correspondence between the physical design and its logical representation, the
accuracy of the delay distribution and consequent hazard analysis may be seriously compromised. To guar-
antee a good model, we developed a circuit to logic compiler called SP2LOG.

SP2LOG translates a SPICE description of a circuit, consisting of transistors and capacitors, to a gate-level
description. It attempts to retain all important functional nodes of the SPICE description in the final model.
In addition, SP2LOG can either calculate delay characteristics at nodes from user-defined equations, or
provide symbolic references into delay tables supplied by alternate means. SP2LOG utilizes boolean anal-
ysis of the pullup and pulldown path functions for each node, coupled with sophisticated conflict resolution
analysis. After the analysis, the resulting expressions are then examined to determine the best gate-level
representation. Since the resulting model accurately represents the physical circuit’s functionality, the
SP2LOG models are applicable to fault analysis as well as fault-free analysis.

FIGURE 5 Schmitt Trigger input pad.

Even in “pure digital” designs, there are several subcircuits whose behavior is sufficiently non-digital to
confuse a switch-level simulator. Typically, but not always, these circuits are located in the pad circuitry;
TTL level shifters and Schmitt trigger input pads are good examples. Figure 5 illustrates a common CMOS
Schmitt trigger input pad. In this circuit we will assume that the effective ON resistance of the P and N
devices are comparable. If the circuit is simulated as shown, the output will always remain in an unknown,
X, state. SP2LOG recognizes the fact that the effective resistance of a p-type transistor used as a pulldown,
or of an n-type transistor used as a pullup, is significantly greater than the resistance of the transistors in
their normal configurations. The resulting model from SP2LOG would be an inverter.

A similar problem arises when a pullup or pulldown transistor has its gate connected to its drain. This con-
figuration can be found in differential amplifiers of memory sense logic, voltage comparators, input pads,
and several other common applications. A single pullup connected in this manner is frequently used as a
level shifter. In Figure 6, the input pad contains several transistors configured as described above used as a
current mirror. During switch simulation of this circuit, the state of the common gate/source node will
oscillate between 0 and 1, reflecting the inability of a logic level model to represent the analog state of this
node.

VDD VDD

VDD
OUTIn
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FIGURE 6 P comparator input pad

For the purposes of logic simulation, these types of transistors can be represented as large resistances (weak
ON devices). The non-linear behavior of these transistors responsible for the amplification of the small dif-
ferences in the input voltage levels is irrelevant for the logic simulator, where inputs can be only 0 or 1
(quantized voltages).

Amazingly, these two cases of analog behavior effectively exhaust all such cases we have found in a wide
variety of digital designs.

The importance of treating the unknown states of the nodes (the X state) correctly was shown in one of the
first papers on switch-level simulation by R. E. Bryant [Bry80]. In the MOSSIM II simulator, the state of
the switch network with nodes in X state is determined by comparing all network states obtained by inde-
pendently assigning each unknown node a value of 0 or 1. With N nodes in X states, this assignment leads
to 2N possible input states. (The MOSSIM algorithm does resolve the state with much less analysis). Like
most gate/switch logic simulators SIMIC does not resolve this condition. However these situations occur
frequently in digital designs. Therefore, without some means of resolving related-X states they cannot sim-
ulated properly. SP2LOG resolves the commonly found subset of related-X configurations and replaces
them by an appropriate higher-level logic circuit that does correctly handle these situations.

5.0   Timing Accuracy
For many current technologies, the effects of non-zero input rise and fall times (so-called “slew-rates”)
must be incorporated in order to achieve a high degree of accuracy in modeling propagation delays and per-
forming hazard analysis. We quickly learned that the dependence of propagation delays on output loading
and input slew rate is not linear over the expected operating range, and that using a single, simple linear
relationship introduces unacceptable errors. SIMIC therefore allows delays to be described by two-dimen-
sional piecewise-linear tables to represent the non-linear relationships. SIMIC will warn if the loading or
input-slew rates exceed the measured data limits but will extrapolate from the nearest segment in the table.

As illustrated in Figure 7(a), the compex rise or fall waveshape obtained from circuit-level simulation is
approximated by a linear ramp. To generate this ramp from the original waveshape, we project the central,
linear portion of the rise (fall) waveshape to the rails. This is usually accomplished by constructing a line
that passes through two threshold points that bracket the 50% point, sufficiently far enough away to reduce
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numerical errors, but close enough so the non-linear “tails” of the curves do not effect the results. In the
technologies that we have worked with, we have found the 35% and 65% points to be satisfactory.

Delays are characterized by two output waveform parameters, as shown in Figure 7(b); the base delay,
Base, which is the time interval from the start of the input ramp to the start of the output ramp, and (2) the
output ramp interval, Oramp. Each piecewise-linear entry in the delay table contains the values six coeffi-
cients, a through f, that relate the two delay parameters to output loading (Load) and input ramp interval
(Iramp) using the following equations:

FIGURE 7 Slew-Rate Delay Model

The propagation delay used by SIMIC is the time interval between the 50% points of the input and output
waveforms: 

6.0  Parameter Fitting
Having the ability to automatically model the functional behavior created a new problem. We required a
method of automatically capturing the delay coefficient for the delay tables. Without an automated means,
the task of generating accurate models was too complex and time consuming. We tried using the Simplex
algorithm commonly used to fit delays in the model, based upon measured path delays, and also a simulta-
neous equation solver, but both had problems accurately distributing the delays due to the under-con-
strained nature of the problem. Exhaustively characterizing every node of every cell used in a design over
the entire range of operating conditions would be a computer resource and/or manpower intensive task, and
was ruled out as a reasonable alternative.

We discovered that we could identify a number of basic circuit configurations (atoms) that could be used to
build accurate delay models for the majority of the cells found in most designs. By characterizing just these
atoms, we could cover most of the configurations found in the library. In this way, we could collect data on
a small number of circuits, and relate them to the rest of the cells with a high degree of delay accuracy.

The atoms consist of P-N stacks with each stack ranging from 1 to n high, where n is the maximum stack
size expected in the library of cells. Each possible stack/transistor size configuration is then fully character-
ized. SP2LOG can be instructed to recognize the atom configurations in the circuit, and reference the
proper delay information for that configuration. In this manner a library can be characterized in a fraction
of the time it usually takes, while providing superior models.
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A parameter fitting program, GENDEL, was developed to automate the creation of SIMIC delay tables
from measured data. With this tool, we have completed all the tools necessary to totally automate the model
generation process, as illustrated in Figure 8.

FIGURE 8 Process for automatic model generation

7.0   Dynamic Power Consumption Analysis
Since one of the benefits of asynchronous design can be low power consumption, a tool was needed to
assist in the analysis of power consumption. The tool developed, XPOWER, analyzes dynamic power con-
sumption, and displays the results in a number of graphical and textual representations. Windowing on test
ranges, and/or node selection, allows the user to focus on any area of interest in great detail.

Dynamic power consumption is calculated from the capacitive energy stored and retrieved at each node
whenever a signal transition occurs. This energy is calculated using the formula , where C
is the nodal capacitance, and ∆V is the high to low (or low to high) change in voltage, which is usually the
supply voltage, Vdd. This formula is valid as long as the charging time is sufficiently greater than the effec-
tive RC time-constant for the node, which is generally the case. XPOWER does not currently take into
account power consumption arising from leakage currents, shorting currents during transient switching
states (through ON transistors), spikes and other transient phenomena, and currents through pullup or pull-
down resistors.

XPOWER automatically filters out the power dissipated by external sources at primary input and bidirec-
tional pads. In addition, through a command file, the user can indicate other signal transitions that need to
be discounted. The power consumption reports are normalized to mw/Mhz, allowing the results to be easily
calculated for any input frequency.

XPOWER can also generate a tailored report in PostScript (with graphs) or ASCII (with tables).
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FIGURE 9 Dissipation Display from XPOWER

Figure 9 illustrates a Dissipation Graph displaying dynamic power consumption along the vertical axis vs.
test vector number along the horizontal axis. This display is typically used to identify areas of interest for
more detailed analysis. It clearly illustrates the effect of exercising various circuit functions on overall
power consumption of power. One of the interesting side benefits of this display has been the identification
of certain timing problems that show up as unusually high power consumption spikes in this graph.

FIGURE 10 Summary Statistics Display

A second display is the summary statistics, shown in Figure 10. This lists summary information for the dis-
played Dissipation Graph, such as the number of tests, the number of transitions, and the minimum and
maximum points in the graph.
Tools For Validating Asynchronous Digital Circuits May 10, 1994 10



A third display is the Distribution Graph, illustrated in Figure 11, with the number of vectors (in which a
given level of power consumption occurs) on the vertical axis and power on the other. This clearly illus-
trates the range of power consumption and how this consumption is distributed.

FIGURE 11 XPOWER Display of Distributed Power

XPOWER allows groups of nodes to be excluded from analysis. This, the power consumption in selected
areas of the design can be determined in dedicated XPOWER sessions. Reports can be generated that
include any of the graphs or other information during the session.

8.0   The University of Manchester, UK, A Case Study

An asynchronous serial-in-parallel-out register (SIPO) with a 2-phase-bundled-data interface, consists of a
ring counter and a set of latches (Figure 12). Upon reception of an event on Rin the enabled stage of the
ring counter sends an event to its associated latch stage. The event is converted to a pulse so the latch can
be made transparent and then returned to opaque, storing the data on Sin as a consequence.

A ring counter consists of one event input and n event outputs. Each output makes one output transition, in
turn, during a cycle. This operation is best demonstrated with a three bit ring counter, see Figure 13(a).
Assume the circuit is initialised to the all-zero state. The top Muller C-element will fire in response to an
event on Rin causing d0 to fire, enabling the second Muller C-element. Two more events on Rin cause d1
and d2 to fire respectively, returning the ring counter to its initial state, albeit with inverted absolute levels. 

When a ring counter has an even number of bits, see Figure 13(b), the circuit operation is slightly more
complicated. On completion of a cycle the ring counter should return to its initial state in which the top

Ring
Counter Latches

Rin

Sin

Ain

Rout Aout

Pout

FIGURE 12 SIPO Architecture
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Muller C-element is enabled. However, an even number of events has been received, since there are an
even number of stages. As a consequence, Rin has the wrong absolute value to fire the top Muller C-ele-
ment, hence the introduction of an additional XOR gate and Muller C-element. The XOR gate inverts Rin
(Rin2) when d3 is fired and the Muller C-element delays the enabling of the top Muller C-element until the
inversion of Rin is complete so as to avoid a false transition on d0.

The SIPO can return bit level completion signal in two ways. The first method delays Rin sufficiently. The
second method, shown in Figure 13(c), derives completion signals from the latching signals using an XOR
tree, and is clearly less effective than the first method, particularly as the number of bits in the SIPO
increases. 

These ring counters rely on the enabled Muller C-element firing after the next Muller C-element has been
deactivated by Rin so the event on Rin does not race through two stages of the ring counter. This situation
arises when the edge speed is greater than 51 nS, according to a HSPICE simulation using typical models
for both n and p type transistors on the 1 micron ES2 process. Unfortunately, many switch-level simulators
lose the information which is required to detect this condition during characterisation. For instance, prior to
using SIMIC we relied on characterising the standard cell library using one input slew rate for the HSPICE
simulation, since in Verilog the ES2 cells are represented as simple module path delays (gate produces out-
put change a delay after the input event causing the change arrives). The delay is composed of two parts:

where:
tint = internal propagation delay,
CL = Load Capacitance and
k = constant scaling factor in nSec/pF.

However, since a symbolic table of results with input edge speed, stack size and capacitive loading as vari-
ables, is built for the process, many of the inaccuracies introduced during conversion from the continuous
to the discrete domain are removed in SIMIC. As a consequence, the race condition in the ring counter is
detected with an input slew rate of 50.1 nS.

In bounded-delay designs such as micropipelines, the modelling of delays can be critical to the perfor-
mance of the circuit. A circuit-level simulator such as HSPICE, can be used to determine all match paths;
however, the design time must be compromised as a consequence. Using SIMIC, a similar amount of con-
fidence can be gained in a switch-level simulation environment. For instance, consider the latches used in
the SIPO (Figure 14). To store data, each latch is first pulsed transparent momentarily, then returned to
opaque. To achieve this a delay is inserted before each XOR gate of the SIPO, so that a request from its
associated ring counter stage causes data to be latched. A SIPO with this implementation removes all
redundant transitions on data outputs, since the stage only samples the input data when required.

This particular design has been used in the design of an asynchronous interface to two serial synchronous
buses, namely the I2C-Bus and I2S-Bus [Farn94]. The objective of the I2C-Bus I/O Expander design was to

FIGURE 13 Ring counters
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determine how effective micropipeline design techniques are for low power consumption in comparison to
synchronous design. Therefore a synchronous device was also developed. XPOWER enabled us to com-
pare the power consumption of the device in all modes of operation at great accuracy. Furthermore, since
signals, subcircuits and test vectors can be removed interactively in an X window environment, the actual
source of the power consumption was determined immediately. For instance, in the synchronous design the
power attributed to the clock could simply be evaluated by removing the clocking signals which ended up
consuming 60% of the entire power consumption in this design. In the micropipeline design the power con-
sumption takes a slightly different form since the control is localised. Therefore the effectiveness of a sub-
circuit in a given simulation was evaluated by either removing the subcircuit and associated outputs or by
only considering the subcircuit and its associated outputs. From these simulations the control component of
the device appeared to use a high proportion of the power consumption. For example a node on an input to
a select block with 0.5% of the simulations transitions (also available interactively) consumes 1.5% of the
power consumption. As a consequence, we have re-evaluated our design strategy with respect to standard
cells. In this design example the exclusion of signals from the simulation was particularly important since
the I2C-Bus consists of two bidirectional wire-ANDed signals. All transitions not caused by the device
could therefore be suppressed. The resulting simulation task was therefore simplified since it could be
achieved within a tailored system environment. In addition, access is given to all the system nodes (pro-
duced by SIMIC at simulation run-time), allowing the nodal capacitances to be altered. In the design of the
I2C-Bus I/O Expander this allowed the application of extra capacitance to its external outputs so as to
determine its effectiveness in a system. The same test vectors were simply run again so a direct comparison
could be made. As a consequence of the resulting power simulation, a design inefficiency was discovered
in the micropipeline solution, which consumed over half of the power consumption in the device.

At Manchester, we believe there is a potential for synthesis methods that can be effectively applied to high
performance architectures and have been developing such a system based on VLSI programming from
Philips Research. [vBer88]

The first generation of tools from PRL were used to build dual rail devices on a custom “standard” cell
library from a Tangram specification. The second generation tools are designed to make use of conven-
tional standard cells and therefore overcome the problems posed by portability and foundry migration.
These tools are typically targeted at consumer electronics applications such as digital audio, and generally,
are not speed critical.

The demands of VLSI programming, when targeted toward performance architectures, are somewhat dif-
ferent. Most consumer devices do not have explicit datapaths and the ones that do may not exhibit fixed
width. As a result, as far as the tools are concerned, there is no differentiation between control and data. In
order to build high speed computing devices it is often necessary to have an exclusive data path made up of
custom components and a control path which may be built up of compiled standard cells, PLA’s, RAM and
ROM.

VLSI programming allows the designer considerable feedback on the chosen specification in regard to
area, timing and power and allows fast re-iteration of the design to eliminate errors and improve perfor-
mance. 
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FIGURE 14 SIPO latch control.
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Thus, the goals at Manchester are to:

• Encompass the VLSI programming discipline

• Extend the scope of the system to allow the addition of custom components

• Maintain the portability and migration advantages of standard cell design.

To this end, a complete design system is being integrated into a commercial CAD environment, namely
Cadence Design Systems Framework II. The first stage involves translating the output from the Tangram
compiler, known as Handshake Circuit Language into a Verilog description so that the resulting description
can then be used for two purposes:

1. Stand alone behavioural simulation. This allows the designer to confirm the functional behaviour of his 
program at an early stage and get very coarse timing and power estimates.

2. Translation into the Cadence database.

With the traditional approach to cell development, a library of fixed cells is created, but if cell variations
are needed, redesign must take place. Variations might include changing the number of inputs, cell func-
tion, design rules, or drive capability. Redesigning always involves more than just moving a polygon; it
means re-simulating, re-characterizing, rebuilding simulation models, and re-documenting as necessary.

With the module generator approach, the generator developer puts the design effort into creating a module
generator that is a parameterized design. The generator is then delivered to an end user, who can use the
generator to produce many variations of a cell.

From one generator and one set of input parameters, all cell library views can be generated including the
schematic symbol, detailed schematic, simulation models (functional and behavioral), logic synthesis mod-
els, symbolic layout, polygon layout, the abstract for place and route, data sheets, documentation, and any
other cell view that may be required. 

The automatic generation of all these views ensures consistency and simplifies cell library management. In
order to maintain portability as mentioned earlier, the custom cells are built using symbolic layout and fed
to a compactor to enable DRC correct cells to be constructed with ease. The designer merely specifies the
topology of the cell which eliminates low level errors, often a major problem when dealing with custom
circuits.

With existing simulators, it is often very difficult to use layout generators since the recharacterisation task
is typically very time consuming and the end user is not granted the flexibility to tune his circuit with
respect to performance in terms of speed, power or area.

The GENDEL/SP2LOG path facilitates this approach, since process characterisation is now only cpu and
not labour intensive. The HSPICE interface has also been extended to allow automatic generation of
SP2LOG models from HSPICE verified schematics and extracted layouts. A Cadence Skill module con-
trols the management of library models so that low level errors can be eliminated effectively.

A complete graphical interface has also been developed using the Open Simulation system. The netlister
module produces hierarchical netlist descriptions from both Composer and Virtuoso. STL can be used to
generate the stimulus files transparently and full color cross probing is available with Genashor’s wave-
form analysis and display program, XWAVE. Both XWAVE and XPOWER support auto update features
which allows the new simulation data to be automatically updated at high speed. The Genashor tools were
easy to incorporate in this framework and allows us to utilize all of the power of these tools in a fully inte-
grated environment.
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9.0  Future Work
There are a number of areas of research we are pursuing.

We are continuing to enhance SP2LOG/SIMIC modeling capabilities. We have prototyped a version of
SIMIC that allows pin to pin delay specification for each element. This will further reduce differences in
delays reported by SIMIC and SPICE. The prototype has been designed so that none of SIMIC’s hazard
analysis is compromised. In addition, the computed delays remain accurate even when multiple inputs
change within the propagation time of the gate. No other known gate-level simulator has demonstrated this
ability.

We are also investigating the use of a methodology, similar to the one described here for delay modeling, to
characterize power consumption with accuracy close to SPICE results. This would encompass power con-
sumption due to shorting currents and other power consumption phenomena currently not addressed by
XPOWER.

10.0   Conclusions

This paper has described several tools that have proven to be very effective for debugging, modeling, and
analyzing the operation of asynchronous designs. The tools run standalone interactively or in batch, and are
easily integrated in a custom design environment. The SIMIC logic simulator performs numerous timing
and hazard checks, often enabling the designer to locate potential timing problems even when the simula-
tion results appear to be correct. The SP2LOG gate-level extractor generates simulation models that accu-
rately reflect the physical implementation. Both programs utilize piecewise-linear characterization of
output delay as a function of output loading and input slew rate that achieve agreement with SPICE to
within 20%. Generation of these delay tables from SPICE simulations of P and N transistor stacks is com-
pletely automated. The XPOWER program has proven to be extremely useful for analyzing dynamic power
consumption in asynchronous designs.

11.0  References
[Bry80] R. E. Bryant. “An Algorithm for MOS Simulation”, Lamda Magazine;

4th Quarter, 1980; p 46-53

[Farn94] Farnsworth C., “Low Power Implementation of an I2C I/O Expander”
Master’s Thesis.

[Sal84] Saleh, R. A., “Iterated Timing Analysis And SPLICE1”, 
Memorandum No. UCB/ERL M84/2, University of California, Berkeley

[Suth89] Sutherland I.E., “Micropipelines”,
Communications of the ACM, p 720-738, 1989.

[Ung69] Unger, S. H. “Asynchronous Sequential Switching Circuits”, Wiley Interscience,
 1969, page 143

[vBer88] van Berkel C.H., Rem M., Saeijs R.W.J.J., “VLSI Programming”,
Proceedings of ICCD, IEEE, p 152-156, 1988.

[Yant92] Yantchev J., An S-I Toggle design. Private Fax communications, 1992.
Tools For Validating Asynchronous Digital Circuits May 10, 1994 15


	Tools For Validating Asynchronous Digital Circuits
	Authors: Gary Gendel, Aaron Ashkinazy1, Shiv Sikand2, and Craig Farnsworth
	1.0 Abstract
	2.0 Simulation Overview
	FIGURE 1� Switch model of 2-input multiplexor and results with unknown control

	3.0 Hazard Analysis For Asynchronous Designs
	(1) Pulse hazard – a “narrow” pulse on a signal whose width is comparable to the signal’s average...
	(2) Spike hazard – a pair of input events at an element’s inputs in which the second event arrive...
	(3) Near hazard – a sequence of input events within an interval in which an element’s output resp...
	FIGURE 2� Combinational Timing Hazards
	FIGURE 3� Toggle Cell And Its Flow Table
	FIGURE 4� SIMIC Simulations Of The Toggle Cell For Different Values Of Input Delay


	4.0 Model Accuracy
	FIGURE 5� Schmitt Trigger input pad.
	FIGURE 6� P comparator input pad

	5.0 Timing Accuracy
	FIGURE 7� Slew-Rate Delay Model

	6.0 Parameter Fitting
	FIGURE 8� Process for automatic model generation

	7.0 Dynamic Power Consumption Analysis
	FIGURE 9� Dissipation Display from XPOWER
	FIGURE 10� Summary Statistics Display
	FIGURE 11� XPOWER Display of Distributed Power

	8.0 The University of Manchester, UK, A Case Study
	FIGURE 12� SIPO Architecture
	FIGURE 13� Ring counters
	FIGURE 14� SIPO latch control.
	1. Stand alone behavioural simulation. This allows the designer to confirm the functional behavio...
	2. Translation into the Cadence database.

	9.0 Future Work
	10.0 Conclusions
	11.0 References



